一种基于强化学习的高速公路交通管控方法
摘要:
本发明涉及交通控制技术领域,具体涉及一种基于强化学习的高速公路交通管控方法,包括以下步骤:步骤一:读取交通管控区域的道路信息,对道路进行区域划分;步骤二:根据区域划分构建离线仿真模型,所述离线仿真模型对交通管控区域的交通进行仿真;步骤三:训练所述离线仿真模型,训练后的离线仿真模型记为智能体;步骤四:将所述智能体部署到实际预测控制模型中,以单位时间最大通过量为目标函数,周期性计算获得优化管控策略,执行所述优化管控策略。本发明的有益技术效果包括:利用强化学习训练智能体,克服模型预测控制对于交通流预测模型过度依赖的缺点,提高了预测的准确度,从而实现有效管控策略的准确解算,获得更为优化的管控策略。
公开/授权文献
0/0