一种数据中心设备运行数据双尺度预测方法
摘要:
本申请涉及一种数据中心设备运行数据双尺度预测方法,包括如下步骤:设读入数据中心设备运行所产生的时间序列数据;得到大尺度波动序列和小尺度波动序列;在大尺度波动序列中,为了降低计算复杂度,预测设备状态长期变化趋势,将大尺度波动序列中的各个时刻数据进行合并形成各个时段即大尺度设备运行状态序列,预测大尺度设备运行状态序列以时段为尺度;使用滑动窗口k近邻预测方法和预匹配方式进行大尺度预测;使用AR预测模型进行小尺度预测;基于大尺度预测值和小尺度预测值得到下一个时刻的设备运行数据。本申请降低计算复杂度,预测设备状态长期变化趋势,实现在保持预测性能的同时降低预测算法的开销。
公开/授权文献
0/0