基于高效动态时间特征嵌入方法的动态图中异常检测方法
摘要:
本发明涉及图像异常检测技术领域,公开了基于高效动态时间特征嵌入方法的动态图中异常检测方法,包括以下步骤:S1、通过DyTEF提取动态图的结构特征,并将节点映射成高维空间向量;S2、提取块内图的时序特征,并把之前块内图的时序信息迁移到当前块中;S3、得到每条边的异常分数,以找出异常边数据。本发明通过在动态图的时序特征提取上,采用了带有记忆向量多头注意力机制来分块地提取特征,而块内每张图的特征提取都是并行地,这大大提高了算法的并行度,提高了算法效;此外,通过记忆力向量的学习与传递,还能提高算法的保存时序特征的能力,让模型提取时序特征更加的完整,从而提高了异常检测的性能,实现全面地异常检测。
0/0