基于PCA-LSTM的电力数据异常检测与预测方法及系统
摘要:
本发明提供一种基于PCA‑LSTM的电力数据异常检测与预测方法及系统,该方法通过获得原始用电采集数据,进行数据排序,得到时间序列的电力数据;进行预处理,获得预处理后的电力数据;采用主成分分析法PCA进行降维,获得降维后的数据,并分为训练集和测试集;构建长短期记忆神经网络预测模型LSTM,对长短期记忆神经网络预测模型LSTM进行优化后,获得最终的长短期记忆神经网络预测模型LSTM;通过得到的最终的长短期记忆神经网络预测模型LSTM进行预测;本发明能够高精度高效率实现电力数据时间序列的数据预测,能够有效去除冗余数据,降低计算复杂度,提升数据处理速度,并有效降低预测误差。
0/0