基于集成片段变换和时间卷积网络的电力负荷分布预测方法
摘要:
一种基于集成片段变换和时间卷积网络的电力负荷分布预测方法。该方法通过集成片段变换对历史电力负荷数据与天气数据进行分解,获得时间序列的趋势项与周期项分量;利用时间卷积网络自适应学习历史数据中的模式特征,构建电力负荷多步预测模型;引入分位数损失目标,得到不同分位数下的预测模型;最后将训练完成的模型应用于实际电力负荷预测中,将中位数模型预测值作为实时负荷预测结果,并利用核密度估计获取实时负荷预测分布。该方法能够为电力负荷预测提供更加全面、精准的信息,对电力系统的调度管理提供重要支持。
0/0