一种基于ATT-GRU模型的行人轨迹预测方法和设备
摘要:
本发明涉及一种基于ATT‑GRU模型的行人轨迹预测方法和设备,方法包括如下步骤:采集人车混行环境下,行人在通过斑马线时的行人运动特性数据、异质性数据和交互场景数据并进行预处理;基于预处理后的行人运动特性数据、异质性数据和交互场景数据,利用预先训练好的ATT‑GRU模型对预定时长内的运动轨迹进行预测。与现有技术相比,本发明充分考虑行人自身的异质性,选取能够进行长时域轨迹预测的ATT‑GRU模型,将预测的轨迹输入到自动驾驶汽车的智能决策模块,帮助车辆实现实时的避障规划,保护行人的安全性,提高了自动驾驶汽车的通行能力。
0/0