风电功率多步预测方法、装置、计算机设备及存储介质
摘要:
本申请涉及神经网络领域,特别是涉及一种风电功率多步预测方法、装置、计算机设备和存储介质,所述方法包括:获取待测风电场的历史风电负荷数据集,所述历史风电负荷数据集包括历史风电功率和历史天气特征;基于所述历史天气特征与所述历史风电功率的相关系数,选择所述历史天气特征中的目标天气特征;将所述历史风电功率和目标天气特征作为样本对CNN‑RNN‑LGBM模型进行训练,以优化所述CNN‑RNN‑LGBM模型的超参数,直到获得最优组合模型;基于所述待测风电场在目标时序段的风电负荷数据集,利用所述最优组合模型进行风电功率的多步预测。本发明提升风电功率的预测精度。
0/0