一种对用于问答的大语言模型进行样本筛选的方法及装置
Abstract:
本发明涉及文本处理技术领域,特别是指一种对用于问答的大语言模型进行样本筛选的方法及装置,方法包括:从样本数据集中筛选出特定样本,基于特定样本对待训练大语言模型进行训练,得到前置模型;基于样本数据集以及前置模型,得到样本数据集中的每个样本数据的多个不同评分,进而确定出每个样本数据的一致性分数以及自信度分数,进而确定每个样本数据的质量评估分数;基于质量评估分数,筛选出微调样本数据;基于微调样本数据,对待训练大语言模型进行训练,得到训练好的大语言模型;基于待回答的用户问题以及训练好的大语言模型,得到更加对齐人类偏好的问题回答。采用本发明,可以提升模型处理和预测的准确性,提高用户问题回答的准确性。
Patent Agency Ranking
0/0