一种风电短期功率爬坡预测方法
摘要:
本发明提供一种风电短期功率爬坡预测方法,涉及风电功率预测领域。所述方法包括以下步骤:获取并预处理预测数据,所述预测数据包括风电历史实际功率、数值天气预报数据、测风塔及风机的理论功率数据和风机的开机容量数据;将预处理后的预测数据输入CNN‑LSTM‑AM功率预测模型中进行训练,基于训练好的CNN‑LSTM‑AM功率预测模型获取功率预测序列数据,通过准确的风电功率预测,爬坡事件的识别和评估,以及模型准确性的维护,可以更有效地规划和管理风电场的运营,最大程度地利用风能资源,提高发电效率,通过爬坡事件的识别和强度评估,可以预测风能波动,提高电网稳定性。
0/0