一种基于深度学习的资质图像分类方法及系统
摘要:
本发明涉及图像分类技术领域,具体为一种基于深度学习的资质图像分类方法及系统,包括以下步骤,基于原始图像数据集,采用数据增强算法,包括随机裁剪、翻转、颜色变换以及Z‑Score标准化方法,进行数据集的扩展和标准化处理,匹配深度学习模型的输入要求,生成增强后的标准化图像数据集。本发明中,通过随机裁剪、翻转、颜色变换及Z‑Score标准化,增强了模型的泛化能力和适应性,采用迁移学习算法和预训练模型,加速了训练过程,减少数据需求和计算资源,SMOTE算法处理类别不平衡问题,确保分类的公正性,图卷积网络和频域分析技术的结合,增强了对图像结构化特征的识别,神经风格迁移技术的应用,优化图像的视觉表现,进一步提升模型的鲁棒性。
公开/授权文献
0/0