一种基于强化学习的多微网能量共享方法
摘要:
本发明提供提出了一种基于强化学习的多微网能量共享方法,包括:S1,建立源荷模型,包括风力发电、光伏发电、储能电池的数学模型;S2,确定微网内部组成单元的约束限制,述约束限制包括负载需求相应限制、储能电池限制、可再生能源限制;S3,基于步骤S1建立的数学模型和步骤S2确定的约束限制设计多微网系统拓扑结构;S4,在步骤S3设计的多微网系统拓扑结构提出多微网分层优化的方法,将系统分为两层进行调度;S5,根据步骤S4提出的优化方法,采用强化学习对下层多微网进行求解,采用自适应粒子群算法对上层进行求解,进而实现多微网能量共享。与现有的方法相比,本发明首次将强化学习与多微网能量共享方法结合起来,通过最佳学习策略,可更有效地利用可用的能量资源,并提高能量共享的效果;同时,也可更好地解决多微网能量共享的复杂性与不确定性。
0/0