基于多特征融合的抗混淆恶意代码分类方法及系统
摘要:
本公开提供了基于多特征融合的抗混淆恶意代码分类方法及系统,涉及网络安全技术领域,根据恶意代码的.asm文件和.bytes文件;分别利用.asm文件和.bytes文件获取加权平均值和灰度图像;将所述加权平均值和灰度图像分别输入至改进的CNN模型中进行特征提取,并将提取出的特征进行融合,生成多特征融合特征表示,将所述多特征融合特征表示输入至引入双向注意力机制的Bi‑LSTM模型中,在前向和后向方向上分别计算注意力权重,并将两个方向的上下文信息进行整合,输出恶意代码分类结果。
0/0