基于多模态融合改进深度学习的极端降水次季节预报方法
摘要:
本发明公开了基于多模态融合改进深度学习的极端降水次季节预报方法,包括:对多种气象要素预报数据及预报目标区域的降水观测数据进行预处理;对影响极端降水发生的多模态特征进行自适应标识编码,并生成对应特征向量,形成无量纲化的多模态预报因子库;构建深度残差卷积神经网络优化模型,并分别利用训练集和验证集对模型进行训练和验证优化;采用训练好的模型进行目标区域的极端降水次季节预报。本发明采用了多气象要素因子、多模态融合与改进损失函数的深度学习神经网络模型,对极端降水预报进行了针对性优化,有效把握极端降水的时空分布特征,提高了极端降水的次季节预报能力,具有极强的应用价值。
0/0