大模型图像样本自动生成方法及系统
摘要:
本发明提供大模型图像样本自动生成方法及系统,方法包括:采集电网设备的差异光谱图像数据,以作为原始数据,对原始数据进行形态学滤波操作、数据清洗操作以及数据整合操作,以得到模型训练输入数据;利用生成对抗网络GAN进行对抗操作,对模型训练输入图像数据进行训练,以进行样本生成以及样本评估操作,获取稀缺样本;将稀缺样本与实时采集图像混合,利用支持向量机进行标注处理,以构造适用泛化能力新数据集;利用迁移学习技术,在适用泛化能力新数据集上,对预训练ResNet模型进行训练、验证操作,以得到适用电网图像大模型。本发明解决了电网设备监测与诊断操作中存在样本稀缺,导致模型的监测诊断性能受有制约的技术问题。
公开/授权文献
0/0