- 专利标题: 面向分布式机器学习的数据安全治理方法、装置、电子设备和存储介质
-
申请号: CN202410748751.5申请日: 2024-06-12
-
公开(公告)号: CN118332584A公开(公告)日: 2024-07-12
- 发明人: 杨明 , 张恒 , 王鑫 , 吴晓明 , 霍吉东 , 陈振娅 , 穆超 , 贺云鹏 , 徐硕 , 吴法宗
- 申请人: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学(山东省科学院)
- 申请人地址: 山东省济南市历下区经十路东首科学院路19号;
- 专利权人: 山东省计算中心(国家超级计算济南中心),齐鲁工业大学(山东省科学院)
- 当前专利权人: 山东省计算中心(国家超级计算济南中心),齐鲁工业大学(山东省科学院)
- 当前专利权人地址: 山东省济南市历下区经十路东首科学院路19号;
- 代理机构: 山东竹森智壤知识产权代理有限公司
- 代理商 吕利敏
- 主分类号: G06F21/60
- IPC分类号: G06F21/60 ; G06N20/00
摘要:
本发明属于机器学习的技术领域,具体涉及面向分布式机器学习的数据安全治理方法、装置、电子设备和存储介质。该方法包括:节点获取其相邻节点在当前迭代中的局部参数,利用即时可靠分数函数计算相邻节点的即时可靠分数,以为相邻节点构建可靠性模型,设定可靠性模型更新规则,在每次迭代中基于该规则对可靠性模型的可靠指数或不可靠指数进行更新;将更新后的可靠性模型代入Beta分布,获取相邻节点的可靠程度并以此构建可靠节点集合;基于可靠节点集合中所有可靠相邻节点的参数计算当前迭代中节点的聚合结果,结合梯度下降更新节点的参数,将更新后的参数发送至其每个相邻节点。本发明可消除拜占庭攻击的影响,确保学习模型的准确性。
公开/授权文献
- CN118332584B 面向分布式机器学习的数据安全治理方法、装置、电子设备和存储介质 公开/授权日:2024-08-27