-
公开(公告)号:CN118897973A
公开(公告)日:2024-11-05
申请号:CN202410967431.9
申请日:2024-07-18
申请人: 齐鲁工业大学(山东省科学院) , 山东省计算中心(国家超级计算济南中心) , 青岛理工大学
IPC分类号: G06F18/21 , G06F18/15 , G06F18/213 , G06F18/214 , G06F18/23 , G06N3/0442 , G06N3/0455 , G06N3/048 , G06N3/049 , G06N3/084 , G06N3/088
摘要: 本发明涉及一种基于VAE‑Bi‑LSTM‑SAM的电网电压数据异常检测方法、装置、设备及存储介质。该方法包括:采集电网电压时序数据构建数据集,对数据集中的数据进行预处理,将预处理后的数据集划分为训练集和测试集;对训练集和测试集中的电网电压时序数据进行标准化处理,按时间步长对标准化处理后的电网电压时序数据进行窗口滑动切片处理,形成多元时序窗口数据Xt;建立基于VAE‑Bi‑LSTM‑SAM的异常数据检测模型;利用训练集对基于VAE‑Bi‑LSTM‑SAM的异常数据检测模型进行训练,得到训练好的异常数据检测模型;利用训练好的异常数据检测模型对测试集中的电网电压时序数据进行异常检测。本发明能够实现对电网电压异常数据的准确检测,提高模型的泛化能力,增强模型对异常数据的识别能力。
-
公开(公告)号:CN118573480B
公开(公告)日:2024-10-25
申请号:CN202411044928.X
申请日:2024-08-01
IPC分类号: H04L9/40
摘要: 本发明涉及一种基于零信任架构的网络安全通信方法、装置、设备及存储介质。本发明旨在构建一个高度安全、灵活且响应迅速的网络通信环境,有效应对现代网络环境中不断演变的安全挑战。采用零信任原则,无论之前是否已被认证,要求在每次通信时都必须重新进行身份验证和信任评估,旨在为网络通信提供全面、智能且高效的安全保障。本发明通过采用数据处理算法和人工智能技术,对网络实体的身份验证、属性分析、交互记录和通信环境,进行实时、动态的信任评估,适用于协同任务等复杂场景,有效识别和防御潜在的安全威胁。本发明能够确保在从数据源到目的地的整个通信过程中,每一步都遵循零信任原则,从而保障通信的安全性和可靠性。
-
公开(公告)号:CN118606634B
公开(公告)日:2024-10-22
申请号:CN202411080709.7
申请日:2024-08-08
IPC分类号: G06F18/10 , G06F18/214 , G06F18/24 , G06N20/00
摘要: 本发明属于分布式机器学习的技术领域,具体涉及一种基于衰减噪声扰动的自适应保隐私分布式学习方法及装置。所述方法包括:根据节点裁剪后的样本梯度获取其本地梯度,节点的裁剪阈值随迭代轮次的增加而减小;对本地梯度注入高斯噪声,高斯噪声的强度随迭代轮次的增加成阶梯式衰减;聚合节点在每轮迭代中注入高斯噪声后的本地梯度,并利用聚合后的梯度更新本地模型参数,将更新后的本地模型参数广播给相邻节点进行参数更新;再聚合相邻节点更新后的模型参数,用于下一次迭代。本发明通过添加噪声以有效保护数据隐私,同时减小噪声误差保证数据的准确性。
-
公开(公告)号:CN118410067B
公开(公告)日:2024-09-10
申请号:CN202410874030.9
申请日:2024-07-02
IPC分类号: G06F16/2453 , G06F16/22 , G06F16/901 , G06F21/62 , G06F21/60 , H04L9/00 , H04L9/06
摘要: 本发明属于保密通信的技术领域,更具体地,涉及一种针对加密图的质量约束最短路径查询方法、装置及计算机可读存储介质。所述方法包括客户端在本地将图数据构造为密文索引,并发送至服务端;客户端将查询起止点利用sha3哈希函数将查询起始点、查询终止点进行计算得到对应的哈希值,将质量阈值利用同态加密进行计算,将计算结果合为三元组即查询令牌,客户端将查询令牌发送至服务端;服务端根据查询令牌中的查询起止点信息进行质量约束最短路径查询,查询结束后将查询结果发送至客户端;客户端进行解密,得到最终的查询结果。本发明解决了现有技术中将图数据根据不同的约束条件转化为多个索引,增加了索引的存储空间,且查询效率较低的问题。
-
公开(公告)号:CN118114750B
公开(公告)日:2024-08-09
申请号:CN202410534273.8
申请日:2024-04-30
IPC分类号: G06N3/098 , G06F18/241
摘要: 本发明属于联邦学习的技术领域,更具体地,涉及一种基于双组件二阶聚合与重优化分类器部分的联邦学习方法、装置及计算机可读存储介质,包括在服务器方生成随机初始化全局模型,并将其下发给客户端;在客户端上进行更新与训练,并在训练完成后生成客户端的本地原型集合,并上传到服务器;服务器通过聚合操作生成新的全局模型和新的全局原型集合,发送给参与训练的客户端;各客户端更新训练当前本地模型,生成新的本地模型和新的本地原型集合,上传到服务器;重复上述过程,直到结束,最终得到个性化联邦学习模型。本发明解决现有技术中面对高度异构的数据时,对模型性能的提升效果有限以及训练出的模型容易出现过拟合现象的问题。
-
公开(公告)号:CN118410067A
公开(公告)日:2024-07-30
申请号:CN202410874030.9
申请日:2024-07-02
IPC分类号: G06F16/2453 , G06F16/22 , G06F16/901 , G06F21/62 , G06F21/60 , H04L9/00 , H04L9/06
摘要: 本发明属于保密通信的技术领域,更具体地,涉及一种针对加密图的质量约束最短路径查询方法、装置及计算机可读存储介质。所述方法包括客户端在本地将图数据构造为密文索引,并发送至服务端;客户端将查询起止点利用sha3哈希函数将查询起始点、查询终止点进行计算得到对应的哈希值,将质量阈值利用同态加密进行计算,将计算结果合为三元组即查询令牌,客户端将查询令牌发送至服务端;服务端根据查询令牌中的查询起止点信息进行质量约束最短路径查询,查询结束后将查询结果发送至客户端;客户端进行解密,得到最终的查询结果。本发明解决了现有技术中将图数据根据不同的约束条件转化为多个索引,增加了索引的存储空间,且查询效率较低的问题。
-
公开(公告)号:CN118114750A
公开(公告)日:2024-05-31
申请号:CN202410534273.8
申请日:2024-04-30
IPC分类号: G06N3/098 , G06F18/241
摘要: 本发明属于联邦学习的技术领域,更具体地,涉及一种基于双组件二阶聚合与重优化分类器部分的联邦学习方法、装置及计算机可读存储介质,包括在服务器方生成随机初始化全局模型,并将其下发给客户端;在客户端上进行更新与训练,并在训练完成后生成客户端的本地原型集合,并上传到服务器;服务器通过聚合操作生成新的全局模型和新的全局原型集合,发送给参与训练的客户端;各客户端更新训练当前本地模型,生成新的本地模型和新的本地原型集合,上传到服务器;重复上述过程,直到结束,最终得到个性化联邦学习模型。本发明解决现有技术中面对高度异构的数据时,对模型性能的提升效果有限以及训练出的模型容易出现过拟合现象的问题。
-
公开(公告)号:CN117972795A
公开(公告)日:2024-05-03
申请号:CN202410382369.7
申请日:2024-04-01
摘要: 本发明属于数据安全的技术领域,更具体地,涉及一种基于异或过滤器的密态空间关键字安全检索方法及装置。该方法包括:数据拥有者端基于安全异或过滤器和地理哈希编码构建安全树索引,使用密钥对空间文本数据集进行加密,并将安全树索引及加密的空间文本数据集上传云服务器端;用户端给定查询,基于查询生成陷门并上传云服务器端;云服务器端根据陷门在安全树索引中搜索目标空间对象,并将由目标空间对象的密文构成的结果集返回给用户端;用户端根据结果集查询完整的密文信息,并使用密钥对密文信息进行解密,得到明文信息。本发明实现在一定空间范围内返回用户期望查询的空间文本数据信息并提供隐私保护,同时提高查询结果的准确性。
-
公开(公告)号:CN116862021A
公开(公告)日:2023-10-10
申请号:CN202310953891.1
申请日:2023-07-31
IPC分类号: G06N20/00
摘要: 本发明公开了一种基于信誉评估的抗拜占庭攻击的去中心化学习方法及系统,涉及人工智能与信息安全交叉技术领域,该方法包括:基于获取的分布式网络中各个节点的训练数据,通过不断迭代训练实现去中心化学习,其训练过程中:分布式网络中的每一节点获取自节点的邻居节点当前轮次的局部参数,以此计算每一邻居节点当前轮次的信誉贡献值和信誉损失值,确定信誉有效值,进而确定自节点及其每一邻居节点的全局历史信誉值;基于全局历史信誉值为自节点及其每一邻居节点分配权重,进而更新自节点的局部参数并发送至邻居节点。本发明构建信誉评估机制,建立全局历史信誉值模型,通过权重分配,降低拜占庭攻击的影响,达到保护学习模型的目的。
-
公开(公告)号:CN116739114A
公开(公告)日:2023-09-12
申请号:CN202310993716.5
申请日:2023-08-09
摘要: 本发明涉及一种对抗模型投毒攻击的鲁棒联邦学习聚合方法及装置,属于数据安全计算机模型的技术领域。本发明旨在提高联邦学习系统的鲁棒性、提供模型的准确性,以应对模型投毒攻击并达到保护本地数据隐私的技术效果,即通过在模型更新聚合过程中引入鲁棒性机制,以过滤恶意更新和提高系统的整体性能。例如,使用加权聚合方法来剔除恶意参与者的贡献,或者使用去噪和修复技术来降低恶意本地模型的影响。
-
-
-
-
-
-
-
-
-