基于小波分解和改进型LSTM的算力网络流量预测方法
摘要:
本发明实施例中提供了一种基于小波分解和改进型LSTM的算力网络流量预测方法,属于通信技术领域,具体包括:数据预处理;构建算力网络流量预测模型;将训练集输入算力网络流量预测模型中,进行迭代训练;将测试集输入训练好的算力网络流量预测模型,评价其精度是否符合要求;采集目标流量数据并将其输入训练好的算力网络流量预测模型中,得到多个分量并拼接为矩阵,卷积长短时记忆网络提取各分量之间的时间和空间特征,之后将特征矩阵转为一维特征向量,双向长短时记忆网络对一维特征向量采用顺序和逆序计算,通过向量拼接得到最终的隐藏表示,再通过全连接层输出实时预测结果。通过本发明的方案,提高了预测实时性、精准度和适应性。
0/0