一种基于双域归一化的交通流时间序列预测方法
摘要:
本发明提出一种基于双域归一化的交通流时间序列预测方法,通过同时在时间域和频率域内的归一化,动态捕捉交通流数据的分布变化,消除时间序列数据中的非平稳因素,然后利用分布预测模型进行预测,再进行去归一化过程,重构其非平稳信息,确保了预测结果能准确反映原始数据的非平稳性特征,从而保证了预测结果的可靠性与鲁棒性,显著提升了交通流时间序列预测的准确性和稳定性。具体而言,频率域归一化将时间序列分解为高频和低频成分,以捕捉快速变化和突变信息;时间域归一化则计算局部统计量,如均值和标准差,从而动态反映时间序列的快速变化。本发明方法显著提高了交通流预测性能,在交通流预测应用中展现出优越性。
0/0