融合时频特征和时空相关性的WSN异常检测方法
摘要:
本发明公开一种融合时频特征和时空相关性的WSN异常检测方法,通过构建时序图数据、时序分解、编码、解码和异常分析实现对WSN中异常节点的有效检测和定位。采用了离散小波变换将数据时序分解成趋势分量和季节分量。趋势编码器和季节编码器都加入了多模态融合的动态图卷积模块,使其能够自适应地调整空间依赖关系,还融合了不同模态的信息,提高了异常检测的准确率。季节编码器利用频域注意力机制来提取特征,能充分利用频域中正常数据与异常数据振幅分布的差异,提高WSN异常数据的识别能力。本发明能够有效地检测和定位WSN中的异常节点,有效提高异常检测的准确性和效率。
0/0