Autonomous, closed-loop and adaptive simulated annealing based machine learning approach for intelligent analytics-assisted self-organizing-networks (SONs)
摘要:
Convergence times associated with simulated annealing based (SA-based) optimization in wireless networks can be reduced by introducing an additional local or cell-level evaluation step into the evaluation of global solutions. In particular, new local solutions may be evaluated based on local performance criteria when the new solutions are in a global solution deemed to have satisfied a global performance criteria. New local solutions that satisfy their corresponding local performance criteria remain in the new global solution. New local solutions that do not satisfy their corresponding local performance criteria are replaced with a corresponding current local solution from a current global solution, thereby modifying the new global solution. The resulting modified global solution includes both new local solutions and current local solutions prior to being accepted as the current global solution for the next iteration.
信息查询
0/0