Chemical mechanical polishing pads for improved removal rate and planarization
Abstract:
The present invention provides a chemical mechanical (CMP) polishing pad for polishing three dimensional semiconductor or memory substrates comprising a polishing layer of a polyurethane reaction product of a thermosetting reaction mixture of a curative of 4,4′-methylenebis(3-chloro-2,6-diethylaniline) (MCDEA) or mixtures of MCDEA and 4,4′-methylene-bis-o-(2-chloroaniline) (MbOCA), and a polyisocyanate prepolymer formed from one or two aromatic diisocyanates, such as toluene diisocyanate (TDI), or a mixture of an aromatic diisocyanate and an alicyclic diisocyanate, and a polyol of polytetramethylene ether glycol (PTMEG), polypropylene glycol (PPG), or a polyol blend of PTMEG and PPG and having an unreacted isocyanate (NCO) concentration of from 8.6 to 11 wt. %. The polyurethane in the polishing layer has a Shore D hardness according to ASTM D2240-15 (2015) of from 60 to 90, a shear storage modulus (G′) at 65° C. of from 125 to 500 MPa, and a damping component (G″/G′ measured by shear dynamic mechanical analysis (DMA), ASTM D5279-08 (2008)) at 50° C. of from 0.06 to 0.13.
Information query
Patent Agency Ranking
0/0