Laser source for a cold-atom inertial sensor
Abstract:
A laser-source assembly that is configured to illuminate a vacuum chamber containing atoms in the gaseous state so as to implement a cold-atom inertial sensor, the atoms having at least two fundamental levels that are separated by a fundamental frequency difference comprised between 1 and a few gigahertz, the assembly comprises: a master laser that emits a beam having a master frequency; a first control loop that is configured to stabilize the master frequency of the master laser on a frequency corresponding to half a set frequency of an atomic transition between a fundamental level and an excited level of the atoms; a slave laser that has a slave frequency; and a second control loop that is configured to stabilize the slave frequency of the slave laser with respect to the master frequency, the slave frequency being offset with respect to the master frequency successively, over time, by a first preset offset value, a second preset offset value, and a third preset offset value, the offset values being comprised in an interval equal to half the fundamental frequency difference plus or minus a few hundred MHz.
Public/Granted literature
Information query
Patent Agency Ranking
0/0