Advanced interconnect with air gap
Abstract:
Ultra-low-k dielectric materials used as inter-layer dielectrics in high-performance integrated circuits are prone to be structurally unstable. The Young's modulus of such materials is decreased, resulting in porosity, poor film strength, cracking, and voids. An alternative dual damascene interconnect process incorporates air gaps into a high modulus dielectric material to maintain structural stability while reducing capacitance between adjacent nanowires. Incorporation of an air gap having k=1.0 compensates for the use of a higher modulus film having a dielectric constant greater than the typical ultra-low-k (ULK) dielectric value of about 2.2. The higher modulus film containing the air gap is used as an insulator between adjacent metal lines, while a ULK film is retained to insulate vias. The dielectric layer between two adjacent metal lines thus forms a ULK/high-modulus dielectric bi-layer.
Public/Granted literature
Information query
Patent Agency Ranking
0/0