Systems and methods for creating and using quantum Boltzmann machines
Abstract:
A hybrid computer generates samples for machine learning. The hybrid computer includes a processor that implements a Boltzmann machine, e.g., a quantum Boltzmann machine, which returns equilibrium samples from eigenstates of a quantum Hamiltonian. Subsets of samples are provided to training and validations modules. Operation can include: receiving a training set; preparing a model described by an Ising Hamiltonian; initializing model parameters; segmenting the training set into subsets; creating a sample set by repeatedly drawing samples until the determined number of samples has been drawn; and updating the model. Operation can include partitioning the training set into input and output data sets, and determining a conditional probability distribution that describes a probability of observing an output vector given a selected input vector, e.g., determining a conditional probability by performing a number of operations to minimize an upper bound for a log-likelihood of the conditional probability distribution.
Information query
Patent Agency Ranking
0/0