- 专利标题: End-to-end model training method and apparatus, and non-transitory computer-readable medium
-
申请号: US16901940申请日: 2020-06-15
-
公开(公告)号: US11182648B2公开(公告)日: 2021-11-23
- 发明人: Hao Xiong , Zhongjun He , Zhi Li , Hua Wu , Haifeng Wang
- 申请人: BEIJING BAIDU NETCOM SCIENCE AND TECHNOLOGY CO., LTD.
- 申请人地址: CN Beijing
- 专利权人: BEIJING BAIDU NETCOM SCIENCE AND TECHNOLOGY CO., LTD.
- 当前专利权人: BEIJING BAIDU NETCOM SCIENCE AND TECHNOLOGY CO., LTD.
- 当前专利权人地址: CN Beijing
- 代理机构: Lathrop GPM LLP
- 优先权: CN201911315572.8 20191218
- 主分类号: G06K9/62
- IPC分类号: G06K9/62 ; G06F40/117 ; G06N20/00
摘要:
The present disclosure provides an end-to-end model training method and apparatus, which relates to a field of artificial intelligence technologies. The method includes: obtaining training data containing a plurality of training samples, in which the plurality of training samples include an original sequence, a target sequence and a corresponding tag list, the tag list includes importance tags in the target sequence and avoidance tags corresponding to the importance tags, and the avoidance tags are irrelevant tags corresponding to the importance tags; and adopting the training data to train a preset end-to-end model until a value of a preset optimization target function is smaller than a preset threshold.
公开/授权文献
信息查询