Synthetic rare class generation by preserving morphological identity
Abstract:
In many real-life applications, ample amount of examples from one class are present while examples from other classes are rare for training and learning purposes leading to class imbalance problem and misclassification. Methods and systems of the present disclosure facilitate generation of an extended synthetic rare class super dataset that is further pruned to obtain a synthetic rare class dataset by maximizing similarity and diversity in the synthetic rare class dataset while preserving morphological identity with labeled rare class training dataset. Oversampling methods used in the art result in cloning of datasets and do not provide the needed diversity. The methods of the present disclosure can be applied to classification of noisy phonocardiogram (PCG) signals among other applications.
Information query
Patent Agency Ranking
0/0