Systems and methods for optimizing a machine learning-informed automated decisioning workflow in a machine learning task-oriented digital threat mitigation platform
Abstract:
A system and method for adapting an errant automated decisioning workflow includes reconfiguring digital abuse or digital fraud logic parameters associated with automated decisioning routes of an automated decisioning workflow in response to identifying an anomalous drift or an anomalous shift in efficacy metrics of the automated decisioning workflow, wherein the automated decisioning workflow includes a plurality of distinct automated decisioning routes that, when applied in a digital threat evaluation of data associated with a target digital event, automatically compute a decision for disposing the target digital event based on a probability digital fraud; simulating, by computers, a performance of the automated decisioning routes in a reconfigured state based on inputs of historical digital event data; calculating simulation metrics based on simulation output data of the simulation; and promoting to an in-production state the automated decisioning workflow having the automated decisioning routes in the reconfigured state.
Information query
Patent Agency Ranking
0/0