Systems and methods for query autocompletion
摘要:
Embodiments described herein provide a query autocompletion (QAC) framework at subword level. Specifically, the QAC framework employs a subword encoder that encodes or converts the sequence of input alphabet letters into a sequence of output subwords. The generated subword candidate sequences from the subword encoder is then for the n-gram language model to perform beam search on. For example, as user queries for search engines are in general short, e.g., ranging from 10 to 30 characters. The n-gram language model at subword level may be used for modeling such short contexts and outperforms the traditional language model in both completion accuracy and runtime speed. Furthermore, key computations are performed prior to the runtime to prepare segmentation candidates in support of the subword encoder to generate subword candidate sequences, thus eliminating significant computational overhead.
信息查询
0/0