Model based discriminant analysis
Abstract:
A model can be trained for discriminant analysis for substance classification and/or measuring calibration. One method includes interacting at least one sensor with one or more known substances, each sensor element being configured to detect a characteristic of the one or more known substances, generating an sensor response from each sensor element corresponding to each known substance, wherein each known substance corresponds to a known response stored in a database, and training a neural network to provide a discriminant analysis classification model for an unknown substance, the neural network using each sensor response as inputs and one or more substance types as outputs, and the outputs corresponding to the one or more known substances.
Public/Granted literature
Information query
Patent Agency Ranking
0/0