Game-theoretic frameworks for deep neural network rationalization
Abstract:
A method and system of determining an output label rationale are provided. A first generator receives a first class of data and selects one or more input features from the first class of data. A first predictor receives the one or more selected input features from the first generator and predicts a first output label. A second generator receives a second class of data and selects one or more input features from the second class of data. A second predictor receives the one or more selected input features from the second generator and predicts a second output label. A discriminator receives the first and second output labels and determines whether the selected one or more input features from the first class of data or the selected features of the one or more input features from the second class of data, more accurately represents the first output label.
Public/Granted literature
Information query
Patent Agency Ranking
0/0