Systems and methods for abstractive document summarization with entity coverage control
Abstract:
Embodiments described herein provide document summarization systems and methods that utilize fine-tuning of pre-trained abstractive summarization models to produce summaries that more faithfully track the content of the documents. Such abstractive summarization models may be pre-trained using a corpus consisting of pairs of articles and associated summaries. For each article-summary pair, a pseudo label or control code is generated and represents a faithfulness of the summary with respect to the article. The pre-trained model is then fine-tuned based on the article-summary pairs and the corresponding control codes. The resulting fine-tuned models then provide improved faithfulness in document summarization tasks.
Information query
Patent Agency Ranking
0/0