Machine learning for document compression
Abstract:
In an example embodiment, machine learning is used to intelligently compress documents to reduce the overall footprint of storing large amounts of files for an organization. Specifically, a document is split into parts, with each part representing a grouping of text or an image. Optical character recognition is performed to identify the text in images. Machine learning techniques are then applied to a part of a document in order to determine how relevant the document is for the organization. The parts that are deemed to be not relevant may then be reduced in size, either by omitting them completely or by summarizing them. This allows for the compression to be tailored specifically to the organization, resulting in the ability to compress or eliminate parts of documents that other organizations might have found relevant (and thus would not have been compressed or eliminated through traditional means).
Public/Granted literature
Information query
Patent Agency Ranking
0/0