Techniques for classifying and recommending software workflows
Abstract:
In various embodiments, a task-based recommendation subsystem automatically recommends workflows for software-based tasks based on a trained machine-learning model that maps different sets of commands to different distributions of weights applied to a set of tasks. In operation, the task-based recommendation subsystem applies a first set of commands associated with a target user to the trained machine-learning model to determine a target distribution of weights applied to the set of tasks. The task-based recommendation subsystem then performs processing operation(s) based on at least two different distributions of weights applied to the set of tasks and the target distribution to determine a training item. Subsequently, the task-based recommendation subsystem generates a recommendation that specifies the training item. Finally, the task-based recommendation subsystem transmits the recommendation to a user to assist the user in performing a particular task.
Public/Granted literature
Information query
Patent Agency Ranking
0/0