- 专利标题: Unsupervised learning of scene structure for synthetic data generation
-
申请号: US17117425申请日: 2020-12-10
-
公开(公告)号: US11816790B2公开(公告)日: 2023-11-14
- 发明人: Jeevan Devaranjan , Sanja Fidler , Amlan Kar
- 申请人: Nvidia Corporation
- 申请人地址: US CA Santa Clara
- 专利权人: Nvidia Corporation
- 当前专利权人: Nvidia Corporation
- 当前专利权人地址: US CA Santa Clara
- 代理机构: Hogan Lovells US LLP
- 主分类号: G06T17/00
- IPC分类号: G06T17/00 ; A63F13/52 ; G06F16/51 ; G06F16/54 ; G06N3/08 ; G06N5/025 ; G06T15/20 ; G06N7/01 ; G06V10/25 ; G06V10/774 ; G06V20/20 ; G06V20/40 ; G06F18/214
摘要:
A rule set or scene grammar can be used to generate a scene graph that represents the structure and visual parameters of objects in a scene. A renderer can take this scene graph as input and, with a library of content for assets identified in the scene graph, can generate a synthetic image of a scene that has the desired scene structure without the need for manual placement of any of the objects in the scene. Images or environments synthesized in this way can be used to, for example, generate training data for real world navigational applications, as well as to generate virtual worlds for games or virtual reality experiences.
公开/授权文献
信息查询
IPC分类:
G | 物理 |
G06 | 计算;推算或计数 |
G06T | 一般的图像数据处理或产生 |
G06T17/00 | 用于计算机制图的3D建模 |