Dynamic hardware selection for experts in mixture-of-experts model
Abstract:
A system assigns experts of a mixture-of-experts artificial intelligence model to processing devices in an automated manner. The system includes an orchestrator component that maintains priority data that stores, for each of a set of experts, and for each of a set of execution parameters, ranking information that ranks different processing devices for the particular execution parameter. In one example, for the execution parameter of execution speed, and for a first expert, the priority data indicates that a central processing unit (“CPU”) executes the first expert faster than a graphics processing unit (“GPU”). In this example, for the execution parameter of power consumption, and for the first expert, the priority data indicates that a GPU uses less power than a CPU. The priority data stores such information for one or more processing devices, one or more experts, and one or more execution characteristics.
Public/Granted literature
Information query
Patent Agency Ranking
0/0