Anomaly detection method and system for manufacturing processes
摘要:
The present disclosure describes a computer-implemented method for detecting anomalies during lot production, wherein the products within a production lot are processed according to a sequence of steps that include manufacturing steps and one or more quality control steps interspersed among the manufacturing steps, the method comprising: obtaining process quality inspection data from each of the one or more quality control steps for a first production lot; obtaining product characteristics data for the products in the first production lot after the final step in the sequence; training a Gaussian process regression model using the process quality inspection data and the product characteristics data from the first production lot; generating a predictive distribution of the product characteristics data using the Gaussian process regression model that uses a bathtub kernel function; obtaining process quality inspection data from each of the quality control steps for a second production lot; identifying anomalies in the second production lot using the predictive distribution of the product characteristics data and the process quality inspection data from the second production lot; if no anomalies are detected in the second production lot, updating the Gaussian process regression model using the process quality inspection data from the second production lot; setting target values for one or more values in the process quality inspection data based on the predictive distribution of the product characteristic; and adjusting settings of one or more manufacturing steps based on the target values.
信息查询
0/0