Encoding relative object information into node edge features
Abstract:
Techniques for determining unified futures of objects in an environment are discussed herein. Techniques may include determining a first feature associated with an object in an environment and a second feature associated with the environment and based on a position of the object in the environment, updating a graph neural network (GNN) to encode the first feature and second feature into a graph node representing the object and encode relative positions of additional objects in the environment into one or more edges attached to the node. The GNN may be decoded to determine a predicted position of the object at a subsequent timestep. Further, a predicted trajectory of the object may be determined using predicted positions of the object at various timesteps.
Public/Granted literature
Information query
Patent Agency Ranking
0/0