- 专利标题: System and method for obtaining color consistency for a color print job across multiple output devices
-
申请号: US10640835申请日: 2003-08-14
-
公开(公告)号: US20050036159A1公开(公告)日: 2005-02-17
- 发明人: Gaurav Sharma , Raja Bala , Robert Rolleston
- 申请人: Gaurav Sharma , Raja Bala , Robert Rolleston
- 专利权人: Xerox Corporation
- 当前专利权人: Xerox Corporation
- 主分类号: H04N1/60
- IPC分类号: H04N1/60
摘要:
A method for maintaining color consistency in an environment of networked devices is disclosed. The method involves identifying a group of devices to which a job is intended to be rendered; obtaining color characteristics from devices in the identified group; modifying the job based on the obtained color characteristics; and rendering the job on one or more of the devices. More specifically, device controllers associated with each of the output devices are queried to obtain color characteristics specific to the associated output device. Preferably, the original job and the modified job employ device independent color descriptions. Modifications are computed by a transform determined by using the color characteristics of the output devices along with the content of the job itself. The method further comprises mapping colors in the original job to the output devices' common gamut, i.e., intersection of the gamuts of the individual printers wherein the color gamut of each device is obtained from a device characterization profile either by retrieving the gamut tag or by derivation using the characterization data in the profile. The color gamut of each device is computed with knowledge of the transforms that relate device independent color to device dependent color using a combination of device calibration and characterization information. Alternatively, transformations are determined dynamically based on the characteristics of the target group of output devices. From the individual color gamuts of the devices, a common intersection gamut is derived. The common intersection gamut derivation generally comprises an intersection of two three-dimensional volumes in color space. This may be performed geometrically by intersecting the surfaces representing the boundaries of the gamut volumes—which are typically chosen as triangles. Alternately, the intersection may be computed by generating a grid of points known to include all involved device gamuts. This is then mapped sequentially to each individual gamut in turn resulting in a set of points that lie within the common gamut to produce a connected gamut surface. Once the common intersection gamut is derived, the input job colors are mapped to this gamut. The optimal technique generally depends on the characteristics of the input job and the user's rendering intent. Final color correction employs a standard calorimetric transform for each output device that does not involve any gamut mapping.
公开/授权文献
信息查询