发明申请
- 专利标题: DISTRIBUTED NON-NEGATIVE MATRIX FACTORIZATION
- 专利标题(中): 分布式非负矩阵法
-
申请号: US12750772申请日: 2010-03-31
-
公开(公告)号: US20110246573A1公开(公告)日: 2011-10-06
- 发明人: Chao Liu , Hung-Chih Yang , Jinliang Fan , Li-Wei He , Yi-Min Wang
- 申请人: Chao Liu , Hung-Chih Yang , Jinliang Fan , Li-Wei He , Yi-Min Wang
- 申请人地址: US WA Redmond
- 专利权人: Microsoft Corporation
- 当前专利权人: Microsoft Corporation
- 当前专利权人地址: US WA Redmond
- 主分类号: G06F15/16
- IPC分类号: G06F15/16
摘要:
Architecture that scales up the non-negative matrix factorization (NMF) technique to a distributed NMF (denoted DNMF) to handle large matrices, for example, on a web scale that can include millions and billions of data points. To analyze web-scale data, DNMF is applied through parallelism on distributed computer clusters, for example, with thousands of machines. In order to maximize the parallelism and data locality, matrices are partitioned in the short dimension. The probabilistic DNMF can employ not only Gaussian and Poisson NMF techniques, but also exponential NMF for modeling web dyadic data (e.g., dwell time of a user on browsed web pages).
公开/授权文献
- US08356086B2 Distributed non-negative matrix factorization 公开/授权日:2013-01-15
信息查询