ONE-PASS STATISTICAL COMPUTATIONS
    1.
    发明申请
    ONE-PASS STATISTICAL COMPUTATIONS 审中-公开
    一次统计计算

    公开(公告)号:US20130253888A1

    公开(公告)日:2013-09-26

    申请号:US13427626

    申请日:2012-03-22

    IPC分类号: G06F17/10

    CPC分类号: G06F17/18

    摘要: Some embodiments of the invention employ algorithms enabling the calculation of one or more statistical moments in a single pass of a dataset. For example, some embodiments may apply algorithms for calculating statistical moments to a dataset using a map-reduce framework, whereby an input dataset is partitioned into multiple shards, a separate map process is used to apply an algorithm enabling calculation of one or more statistical moments in a single scan to each shard, and one or more reduce processes consolidate the results generated by the map processes to calculate the one or more statistical moments across the entire dataset. In other embodiments of the invention, a map-reduce framework may be employed to apply algorithms enabling calculation of a covariance between data elements expressed in a dataset, instead of or in addition to one or more statistical moments.

    摘要翻译: 本发明的一些实施例使用能够计算数据集的单次通过中的一个或多个统计矩阵的算法。 例如,一些实施例可以应用用于使用map-reduce框架来计算统计矩阵到数据集的算法,由此将输入数据集划分成多个分片,使用单独的映射过程来应用能够计算一个或多个统计时刻的算法 对每个分片进行单次扫描,并且一个或多个减少过程合并由映射过程生成的结果,以计算整个数据集中的一个或多个统计矩。 在本发明的其他实施例中,可以采用映射减少框架来应用能够计算在数据集中表示的数据元素之间的协方差的算法,而不是一个或多个统计矩阵,或者除了一个或多个统计矩。

    MULTI-CENTER CANOPY CLUSTERING
    2.
    发明申请
    MULTI-CENTER CANOPY CLUSTERING 有权
    多中心聚集

    公开(公告)号:US20130246429A1

    公开(公告)日:2013-09-19

    申请号:US13423286

    申请日:2012-03-19

    IPC分类号: G06F17/30

    CPC分类号: G06F17/30598 G06F17/30011

    摘要: A canopy clustering process merges at least one set of multiple single-center canopies together into a merged multi-center canopy. Multi-center canopies, as well as the single-center canopies, can then be used to partition data objects in a dataset. The multi-center canopies allow a canopy assignment condition constraint to be relaxed without risk of leaving any data objects in a dataset outside of all canopies. Approximate distance calculations can be used as similarity metrics to define and merge canopies and to assign data objects to canopies. In one implementation, a distance between a data object and a canopy is represented as the minimum of the distances between the data object and each center of a canopy (whether merged or unmerged), and the distance between two canopies is represented as the minimum of the distances for each pairing of the center(s) in one canopy and the center(s) in the other canopy.

    摘要翻译: 冠层聚类过程将至少一组多个单中心檐篷合并成合并的多中心冠层。 多中心檐篷以及单中心檐篷可用于对数据集中的数据对象进行分区。 多中心檐篷允许放宽冠层分配条件约束,而不会在所有檐篷之外的数据集中留下任何数据对象的风险。 近似距离计算可以用作相似性度量来定义和合并檐篷,并将数据对象分配给檐篷。 在一个实现中,数据对象和冠层之间的距离被表示为数据对象和冠层的每个中心之间的距离的最小值(无论是合并还是未合并),并且两个檐篷之间的距离被表示为 一个冠层中心的每个配对的距离和另一个冠层中的一个或多个中心。

    AUTO-DETECTION OF HISTORICAL SEARCH CONTEXT
    4.
    发明申请
    AUTO-DETECTION OF HISTORICAL SEARCH CONTEXT 有权
    自动检测历史搜索条件

    公开(公告)号:US20110225192A1

    公开(公告)日:2011-09-15

    申请号:US12721565

    申请日:2010-03-11

    IPC分类号: G06F17/30 G06F15/18 G06N5/02

    CPC分类号: G06F17/30646 G06F17/30867

    摘要: Architecture that automatically detects historical search contexts as well as behaviors related to a search query. Machine learning and hand-authored rules are employed to automatically identify search contexts. Historical information likely to be useful in the current context is surfaced. When a user enters a search query or executes another search behavior, past behaviors are exposed which are contextually related to the current behavior. The architecture also provides automatic discovery of historical contexts, features related to the contexts, and training or authoring of a system for classifying behavior into contexts, using some combination of the machine learning and/or hand-authored rules. A runtime system classifies the current user behavior into a context and surfaces contextual information to the user.

    摘要翻译: 自动检测历史搜索上下文以及与搜索查询相关的行为的体系结构。 采用机器学习和手写规则来自动识别搜索上下文。 在当前情况下可能有用的历史信息浮出水面。 当用户输入搜索查询或执行其他搜索行为时,会暴露与当前行为上下文相关的过去行为。 该架构还提供自动发现历史背景,与上下文有关的功能,以及使用机器学习和/或手工制作规则的某些组合来将行为分类到上下文中的系统的训练或创作。 运行时系统将当前用户行为分类为上下文,并向用户显示上下文信息。

    ILLUMINATING BRICK
    5.
    发明申请
    ILLUMINATING BRICK 失效
    照明砖

    公开(公告)号:US20090091924A1

    公开(公告)日:2009-04-09

    申请号:US12135863

    申请日:2008-06-09

    IPC分类号: F21S8/00 F21V7/00

    摘要: An illuminating brick includes a block and at least one light-emitting element mounted in the brick. The brick has a top face, a bottom face and a plurality of lateral side surfaces interconnecting the top and bottom faces. The at least one light-emitting element is engaged in and optically coupled to at least one of the bottom face and lateral side surfaces. The lateral side surfaces and the bottom face are configured for reflecting and directing light emitted from the at least a light-emitting element to exit through the top face.

    摘要翻译: 照明砖包括块和安装在砖中的至少一个发光元件。 该砖具有互连顶面和底面的顶面,底面和多个侧面。 所述至少一个发光元件与所述底面和所述侧面中的至少一个接合并光学耦合。 横向侧表面和底面被配置为用于反射和引导从至少一个发光元件发射的光从顶面排出。

    Light-emitting device
    6.
    发明授权
    Light-emitting device 有权
    发光装置

    公开(公告)号:US08362501B2

    公开(公告)日:2013-01-29

    申请号:US12769744

    申请日:2010-04-29

    IPC分类号: H01L33/22

    CPC分类号: H01L33/40 H01L2933/0091

    摘要: The application illustrates a light-emitting device including a contact layer and a current spreading layer on the contact layer. A part of the contact layer is a rough structure and a part of the contact layer is a flat structure. A part of the current spreading layer is a rough structure and a part of the current spreading layer is a flat structure. The rough region of the contact layer and the rough region of the current spreading layer are substantially overlapped.

    摘要翻译: 该应用示出了在接触层上包括接触层和电流扩散层的发光器件。 接触层的一部分是粗糙结构,并且接触层的一部分是平坦结构。 电流扩散层的一部分是粗糙结构,并且电流扩展层的一部分是平坦结构。 接触层的粗糙区域和电流扩散层的粗糙区域基本上重叠。

    BIOINFORMATICS COMPUTATION USING A MAPRREDUCE-CONFIGURED COMPUTING SYSTEM
    8.
    发明申请
    BIOINFORMATICS COMPUTATION USING A MAPRREDUCE-CONFIGURED COMPUTING SYSTEM 审中-公开
    使用映射配置计算系统进行生物计算

    公开(公告)号:US20080133474A1

    公开(公告)日:2008-06-05

    申请号:US11564983

    申请日:2006-11-30

    IPC分类号: G06F17/30

    CPC分类号: G16B30/00 G16B50/00

    摘要: A MapReduce architecture may be utilized for sequence alignment algorithm processing (such as BLAST or BLAST-like algorithms). In addition, a MapReduce architecture may be extended such that memory of the computing devices of a MapReduce-configured system may be shared between different jobs of sequence alignment and/or other bioinformatics algorithm processing, thereby reducing overhead associated with executing such jobs using the MapReduce-configured system.

    摘要翻译: MapReduce架构可用于序列比对算法处理(如BLAST或BLAST类算法)。 此外,MapReduce架构可以被扩展,使得MapReduce配置的系统的计算设备的存储器可以在序列对准和/或其他生物信息学算法处理的不同作业之间共享,从而减少与使用MapReduce执行这样的作业相关联的开销 配置系统。

    Identifying influential users of a social networking service
    9.
    发明授权
    Identifying influential users of a social networking service 有权
    识别社交网络服务的有影响力的用户

    公开(公告)号:US09218630B2

    公开(公告)日:2015-12-22

    申请号:US13427584

    申请日:2012-03-22

    摘要: Techniques for identifying influential users of a social networking service are provided. Influential users may be identified via an algorithm in which an influence score is assigned to each user based at least in part on other members of the community users having taken an affirmative step with respect to the user's communications. Iterative processing may be performed, with each user's influence score being determined by contributions from other users, and each contribution being determined by the contributor's influence score as of a prior iteration. A map-reduce framework may be employed, with data representing the community being partitioned into a plurality of discrete shards, a map process corresponding to each shard calculating an influence score for users represented in the shard, and reduce processes ranking users according to influence score across all shards.

    摘要翻译: 提供了用于识别社交网络服务的有影响力用户的技术。 可以通过至少部分地基于对用户的通信采取肯定步骤的社区用户的其他成员的算法来识别影响用户,其中影响分数被分配给每个用户。 可以执行迭代处理,每个用户的影响分数由来自其他用户的贡献确定,并且每个贡献由先前迭代中的贡献者的影响分数确定。 可以采用地图缩减框架,其中表示社区的数据被划分成多个离散碎片,对应于每个碎片的映射处理计算分片中表示的用户的影响分数,并且减少根据影响分数对用户进行排名的过程 跨越所有碎片

    Multi-center canopy clustering
    10.
    发明授权
    Multi-center canopy clustering 有权
    多中心冠层聚类

    公开(公告)号:US08886649B2

    公开(公告)日:2014-11-11

    申请号:US13423286

    申请日:2012-03-19

    IPC分类号: G06F7/00 G06F17/30

    CPC分类号: G06F17/30598 G06F17/30011

    摘要: A canopy clustering process merges at least one set of multiple single-center canopies together into a merged multi-center canopy. Multi-center canopies, as well as the single-center canopies, can then be used to partition data objects in a dataset. The multi-center canopies allow a canopy assignment condition constraint to be relaxed without risk of leaving any data objects in a dataset outside of all canopies. Approximate distance calculations can be used as similarity metrics to define and merge canopies and to assign data objects to canopies. In one implementation, a distance between a data object and a canopy is represented as the minimum of the distances between the data object and each center of a canopy (whether merged or unmerged), and the distance between two canopies is represented as the minimum of the distances for each pairing of the center(s) in one canopy and the center(s) in the other canopy.

    摘要翻译: 冠层聚类过程将至少一组多个单中心檐篷合并成合并的多中心冠层。 多中心檐篷以及单中心檐篷可用于对数据集中的数据对象进行分区。 多中心檐篷允许放宽冠层分配条件约束,而不会在所有檐篷之外的数据集中留下任何数据对象的风险。 近似距离计算可以用作相似性度量来定义和合并檐篷,并将数据对象分配给檐篷。 在一个实现中,数据对象和冠层之间的距离被表示为数据对象和冠层的每个中心之间的距离的最小值(无论是合并还是未合并),并且两个檐篷之间的距离被表示为 一个冠层中心的每个配对的距离和另一个冠层中的一个或多个中心。