- 专利标题: FLEXIBLE HARDWARE FOR HIGH THROUGHPUT VECTOR DEQUANTIZATION WITH DYNAMIC VECTOR LENGTH AND CODEBOOK SIZE
-
申请号: US17232074申请日: 2021-04-15
-
公开(公告)号: US20210232904A1公开(公告)日: 2021-07-29
- 发明人: Amol Ashok AMBARDEKAR , Aleksandar TOMIC , Chad Balling McBRIDE , George PETRE , Kent D. CEDOLA , Larry Marvin Wall , Boris BOBROV
- 申请人: MICROSOFT TECHNOLOGY LICENSING, LLC
- 申请人地址: US WA Redmond
- 专利权人: MICROSOFT TECHNOLOGY LICENSING, LLC
- 当前专利权人: MICROSOFT TECHNOLOGY LICENSING, LLC
- 当前专利权人地址: US WA Redmond
- 主分类号: G06N3/063
- IPC分类号: G06N3/063 ; G06N3/04 ; G06F12/0862 ; G06F9/46 ; G06F1/324 ; G06F3/06 ; G06F9/38 ; G06F12/08 ; G06F12/10 ; G06F15/80 ; G06F17/15 ; G06N3/06 ; G06N3/08 ; G06N3/10 ; H03M7/30 ; H04L12/715 ; H04L29/08 ; G06F9/30 ; G06F13/16 ; G06F1/3234 ; G06F12/02 ; G06F13/28
摘要:
The performance of a neural network (NN) and/or deep neural network (DNN) can limited by the number of operations being performed as well as memory data management of a NN/DNN. Using vector quantization of neuron weight values, the processing of data by neurons can be optimize the number of operations as well as memory utilization to enhance the overall performance of a NN/DNN. Operatively, one or more contiguous segments of weight values can be converted into one or more vectors of arbitrary length and each of the one or more vectors can be assigned an index. The generated indexes can be stored in an exemplary vector quantization lookup table and retrieved by exemplary fast weight lookup hardware at run time on the fly as part of an exemplary data processing function of the NN as part of an inline de-quantization operation to obtain needed one or more neuron weight values.
公开/授权文献
信息查询