- 专利标题: Multi-Objective Real-time Power Flow Control Method Using Soft Actor-Critic
-
申请号: US17092478申请日: 2020-11-09
-
公开(公告)号: US20210367424A1公开(公告)日: 2021-11-25
- 发明人: Ruisheng Diao , Di Shi , Bei Zhang , Siqi Wang , Haifeng Li , Chunlei Xu , Desong Bian , Jiajun Duan , Haiwei Wu
- 申请人: Ruisheng Diao , Di Shi , Bei Zhang , Siqi Wang , Haifeng Li , Chunlei Xu , Desong Bian , Jiajun Duan , Haiwei Wu
- 申请人地址: US WA Richland; US CA San Jose; US CA San Jose; US CA San Jose; CN Nanjing; CN Nanjing; US CA San Jose; US CA San Jose; CN Nanjing
- 专利权人: Ruisheng Diao,Di Shi,Bei Zhang,Siqi Wang,Haifeng Li,Chunlei Xu,Desong Bian,Jiajun Duan,Haiwei Wu
- 当前专利权人: Ruisheng Diao,Di Shi,Bei Zhang,Siqi Wang,Haifeng Li,Chunlei Xu,Desong Bian,Jiajun Duan,Haiwei Wu
- 当前专利权人地址: US WA Richland; US CA San Jose; US CA San Jose; US CA San Jose; CN Nanjing; CN Nanjing; US CA San Jose; US CA San Jose; CN Nanjing
- 主分类号: H02J3/00
- IPC分类号: H02J3/00 ; G05B13/02 ; G05B13/04
摘要:
Systems and methods are disclosed for control voltage profiles, line flows and transmission losses of a power grid by forming an autonomous multi-objective control model with one or more neural networks as a Deep Reinforcement Learning (DRL) agent; training the DRL agent to provide data-driven, real-time and autonomous grid control strategies; and coordinating and optimizing power controllers to regulate voltage profiles, line flows and transmission losses in the power grid with a Markov decision process (MDP) operating with reinforcement learning to control problems in dynamic and stochastic environments.
公开/授权文献
信息查询