Prediction and Management of System Loading
Abstract:
Supervised learning creates and trains a model to predict resource consumption by a remote system. Historical time-series data (e.g., monitor logs of CPU consumption, memory consumption) are collected from systems called upon to perform a task. This raw data is transformed into a labeled data set ready for supervised learning. Using the labeled data set, a model is constructed to correlate the input data with a resulting load. The constructed model may be a Sequence to Sequence (Seq2Seq) model based upon Gated Recurrent Units of a Recurrent Neural Network. After training, the model is saved for re-use to predict future load based upon an existing input. For example, the existing input may be data from a most recent 24 hour period (hour0-hour23), and the output of the model may be the load predicted for the next 24 hour period (hour24-hour47). This prediction promotes efficient reservation remote server resources.
Information query
Patent Agency Ranking
0/0