STUCK-AT FAULT MITIGATION METHOD FOR RERAM-BASED DEEP LEARNING ACCELERATORS
Abstract:
A stuck-at fault mitigation method for resistive random access memory (ReRAM)-based deep learning accelerators, includes: confirming a distorted output value (Y0) due to a stuck-at fault (SAF) by using a correction data set in a pre-trained deep learning network, by means of ReRAM-based deep learning accelerator hardware; updating an average (μ) and a standard deviation (σ) of a batch normalization (BN) layer by using the distorted output value (Y0), by means of the ReRAM-based deep learning accelerator hardware; folding the batch normalization (BN) layer in which the average (μ) and the standard deviation (σ) are updated into a convolution layer or a fully-connected layer, by means of the ReRAM-based deep learning accelerator hardware; and deriving a normal output value (Y1) by using the deep learning network in which the batch normalization (BN) layer is folded, by means of the ReRAM-based deep learning accelerator hardware.
Information query
Patent Agency Ranking
0/0