MULTI-OBJECT POSITIONING USING MIXTURE DENSITY NETWORKS
Abstract:
Certain aspects of the present disclosure provide techniques for object positioning using mixture density networks, comprising: receiving radio frequency (RF) signal data collected in a physical space; generating a feature vector encoding the RF signal data by processing the RF signal data using a first neural network; processing the feature vector using a first mixture model to generate a first encoding tensor indicating a set of moving objects in the physical space, a first location tensor indicating a location of each of the moving objects in the physical space, and a first uncertainty tensor indicating uncertainty of the locations of each of the moving objects in the physical space; and outputting at least one location from the first location tensor.
Public/Granted literature
Information query
Patent Agency Ranking
0/0