EXTRACTING REGION OF INTEREST FROM SCANNED IMAGES AND DETERMINING AN ASSOCIATED IMAGE TYPE THEREOF
摘要:
ROI (Region of Interest) detection is an important step in extracting relevant information from a document image. Such images are very high-resolution images in nature and size of images is in order of megabytes, which makes text detection pipeline very slow. Traditional methods detect and extract ROI from images, but these work only for specific image types. Other approaches include deep learning (DL) based methods for ROI detect which need intensive training and require high end computing infrastructure/resources with graphical processing unit (GPU) capabilities. Systems and methods of the present disclosure perform ROI extraction by partitioning input image into parts based on its visual perception and then classify the image in first or second category. Region of interest is extracted from a resized image based on the classification by applying image processing techniques. Further, the system determines whether the input image is a pre-cropped image or a normal scanned image.
信息查询
0/0