ADAPTIVE HIGH-PRECISION COMPRESSION METHOD AND SYSTEM BASED ON CONVOLUTIONAL NEURAL NETWORK MODEL
Abstract:
The present disclosure discloses an adaptive high-precision compression method and system based on a convolutional neural network model, and belongs to the fields of artificial intelligence, computer vision, and image processing. According to the method of the present disclosure, coarse-grained pruning is performed on a neural network model by using a differential evolution algorithm first, and the coarse-grained space is quickly searched through an entropy importance criterion and an objective function with good guidance to obtain a near-optimal neural network structure. Then fine-grained search space is built on the basis of an optimal individual obtained from the coarse-grained search, and fine-grained pruning is performed on the neural network model by a differential evolution algorithm to obtain a network model with an optimal structure. Finally, the performance of the optimal model is restored by using a multi-teacher multi-step knowledge distillation network to reach the precision of an original model.
Information query
Patent Agency Ranking
0/0