- 专利标题: SYSTEM AND METHOD FOR THE LATENT SPACE OPTIMIZATION OF GENERATIVE MACHINE LEARNING MODELS
-
申请号: US17865834申请日: 2022-07-15
-
公开(公告)号: US20220358373A1公开(公告)日: 2022-11-10
- 发明人: Alwin Bucher , Gintautas Kamuntavicius , Alvaro Prat , Orestis Bastas , Zygimantas Jocys , Roy Tal
- 申请人: Ro5 Inc.
- 申请人地址: US TX Dallas
- 专利权人: Ro5 Inc.
- 当前专利权人: Ro5 Inc.
- 当前专利权人地址: US TX Dallas
- 主分类号: G06N5/02
- IPC分类号: G06N5/02 ; G06F16/951 ; G06K9/62 ; G06N3/08 ; G16B15/00 ; G16B40/00 ; G16B45/00 ; G16B50/10
摘要:
A system and method for optimizing the latent space in generative machine learning models, and applications of the optimizations for use in the de novo generation of molecules for both ligand-based and pocket-based generation. The ligand-based optimizations comprise a tunable reward system based on a multi-property model and further define new measurable metrics: molecular novelty and uniqueness. The pocket-based optimizations comprise an initial multi-property optimization followed up by either a seed-based optimization or a relaxed-based optimization.
公开/授权文献
信息查询