SYSTEM AND METHOD FOR THE LATENT SPACE OPTIMIZATION OF GENERATIVE MACHINE LEARNING MODELS
摘要:
A system and method for optimizing the latent space in generative machine learning models, and applications of the optimizations for use in the de novo generation of molecules for both ligand-based and pocket-based generation. The ligand-based optimizations comprise a tunable reward system based on a multi-property model and further define new measurable metrics: molecular novelty and uniqueness. The pocket-based optimizations comprise an initial multi-property optimization followed up by either a seed-based optimization or a relaxed-based optimization.
信息查询
0/0