DATA AUGMENTATION AND BATCH BALANCING METHODS TO ENHANCE NEGATION AND FAIRNESS
Abstract:
Techniques for augmentation and batch balancing of training data to enhance negation and fairness of a machine learning model. In one particular aspect, a method is provided that includes generating a list of demographic words associated with a demographic group, searching an unlabeled corpus of text to identify unlabeled examples in a target domain comprising at least one demographic word from the list of demographic words, rewriting the unlabeled examples to create one or more versions of each of the unlabeled examples and generate a fairness invariance data set, and training the machine learning model using unlabeled examples from the fairness invariance data set.
Information query
Patent Agency Ranking
0/0