- 专利标题: INSTANCE ADAPTIVE TRAINING WITH NOISE ROBUST LOSSES AGAINST NOISY LABELS
-
申请号: US17510782申请日: 2021-10-26
-
公开(公告)号: US20230196087A1公开(公告)日: 2023-06-22
- 发明人: Lifeng Jin , Linfeng Song , Kun Xu , Dong Yu
- 申请人: TENCENT AMERICA LLC
- 申请人地址: US CA Palo Alto
- 专利权人: TENCENT AMERICA LLC
- 当前专利权人: TENCENT AMERICA LLC
- 当前专利权人地址: US CA Palo Alto
- 主分类号: G06N3/08
- IPC分类号: G06N3/08 ; G06N3/04 ; G06K9/62
摘要:
There is included a method and apparatus comprising computer code for a joint training method using neural networks with noise-robust losses comprising encoding input tokens from a noisy dataset into input vectors using an input encoder; predicting a label based on the input vectors using a classifier model; calculating a beta value based on the input vectors and the label using a label quality predictor model, wherein the beta value is instance-specific for each training instance; and j oint training more than one model using a first modified loss function based on the beta value and an entropy value.
信息查询